

Shellfish Upweller Nurseries

Dale Leavitt Aquaculture Extension Specialist

Technique for growing juvenile shellfish Downweller Nursery Plastic Cylinder Water Level Juvenile Shellfish Micromésh Screening

RWU Downweller

Technique for growing juvenile shellfish

Raceway Culture Nursery

Raceway Culture System

Technique for growing juvenile shellfish

Field Nursery

Technique for growing juvenile shellfish Upweller Nursery Silo Inflow_____ Outflow .--Upwelling water flow Shellfish seed 2400-0-0-Nytex screening

Upweller Nursery

Technique for growing juvenile shellfish

Upweller Nursery: advantages & disadvantages

Advantages

good water flow pattern

Technique for growing juvenile shellfish

Upweller Nursery: advantages & disadvantages

Advantages

- good water flow pattern
- high food flux
- high stocking density
- predators excluded

Disadvantages

- requires access to water
- relatively high start-up cost
- high maintenance

Upweller design strategies - four options

- Onshore within a structure
- Onshore exposed to weather
- Floating with shore power
- Floating without shore power

Onshore within a structure

Basically a building next to the water

- Protected from the elements
- Reduces biofouling
- Utilities nearby
- User friendly

Onshore within a structure

But....!

- Limited availability
- VERY expensive!!!
- Hard to justify for seasonal use
- Need to lift water

Onshore exposed to the elements

Land or dock space next to the water

- Less expensive than a building
- Somewhat protected
- Utilities nearby
- User friendly

Onshore exposed to the elements

But....!

- Limited availability
- Moderately expensive
- Mother Nature
- Exposed to outside tampering
- Need to lift water

Floating with shore power

On the water, frequently associated with a marina FLUPSY - FLoating UPweller SYsyem

- At a water source
- Lower operating costs
- Utilities nearby
- User friendly

Floating with shore power

But...!

- Limited access
- Mother Nature!
- Exposed to outside interference
- Water quality

Floating with shore power

Floating without shore power

On the water, frequently at a mooring.

- At a water source
- Mobile
- Not dependent on shoreside utilities
- Minimal operating costs

Fig. 1 - Three-dimensional schematic of the Tidal-Powered Upwelling Nursery System.

Floating without shore power

But...!

- Limited access
- Not protected from disturbance (nature and human)
- Utilities not nearby
- Not user friendly

- Purchase/acquire seed from hatchery
 - Size & amount?
- Nursery System design
 - Downweller (175 to 500 μ m).
 - Upweller (500 μ m to 25 mm).
 - Raceway (3 mm to 25 mm).
 - Field nursery (>3 mm)

How does one develop a shellfish nursery system?

- Assess your needs
- Identify your location
- Decide on your general design strategy
- Obtain permits
- Purchase and install system
- Get seed

Assessing your needs?

- What shellfish are you growing?
- How many do you want to grow?
- What size seed will you acquire?
- How large do you want to grow them in the nursery?
- How much time can you spend maintaining the system?
- How much money do you have to invest in the system?

Identifying your location?

- What space do I have available?
- What are the water characteristics?
 - For shellfish to survive?
 - For shellfish to grow?
- What utilities do I have on-site?
- What is my primary means to access the site?

Various options when designing the upweller

- Tank design
- Discharge placement
- Silo shape
- Silo construction material
- Pump design and placement
- Size

Tank design

Generally square tank or trough

Alternate tank designs

No tank

Drain placement

Central trough vs Outboard discharge

Silo shape

Square vs Round

Silo Material

Wood vs. Plastic vs.
 Fiberglass

Materials for Silo Construction

Duct Pipe

- Duct Pipe
- Sewer Pipe

- Duct Pipe
- Sewer Pipe
- Plastic Barrels

- Duct Pipe
- Sewer Pipe
- Plastic Barrels
- Plastic Buckets

- Duct Pipe
- Sewer Pipe
- Plastic Barrels
- Plastic Buckets
- Sheet plastic

- Duct Pipe
- Sewer Pipe
- Plastic Barrels
- Plastic Buckets
- Sheet plastic
- Fiberglass

Centrifugal Pumps

Other Pumps Axial Flow Pump upstream

*Other Pumps*Axial Flow Pump

- upstream
- downstream

*Other Pumps*Axial Flow Pump

Paddlewheel

*Other Pumps*Axial Flow Pump

Paddlewheel

Airlift

Scale

Small

- Scale Small to
 - Not so small

Two questions seem to always come up!

- How much flow do I need to provide through the upweller?
- How many seed can I put in the upweller? or How big an upweller do I need for X million seed?
- Sometimes the answer to these two questions can be combined.
 - For example a Rule of Thumb you may have heard
 - "100 gpm per 100,000 seed"
- However we can do better than that!
- Need to think about
 - Flow

D

Stocking density

Upweller Comparison Data - flow

 	wollor Data				
Opweller Data			flow	silo area	flow/area
			(gpm / silo)	(in²)	(gpm/in²)
Liter	ature values				
*	Malinowski	1986	5.0	153.9	0.0325
*	Manzi <i>et al</i> .	1984	9.3	381.6	0.0245
Upwellers					
	Floating airlift	Harwich	21.0	153.9	0.1365
*	NC/Mook tidal raft	book	11.1	361.0	0.0307
*	Tidal raft	Eastham	13.2	324.0	0.0407
	Land-based - outside	Mashpee	5.8	176.6	0.0330
*	Land-based - outside	Falmouth	10.4	176.6	0.0589
	Land-based - outside	Yarmouth	6.3	254.3	0.0246
*	Land-based - inside	Chatham	8.0	254.3	0.0313
	Land-based - inside	Harwich	4.0	254.3	0.0157
	Raft-based - outside	Brewster	9.4	418.0	0.0224
*	Axial flow	SEMAC	83.3	254.3	0.3275
*	FLUPSY - conv	Leavitt	67.5	576.0	0.1172
*	FLUPSY - modifed	Leavitt	71.7	576.0	0.1245
*	FLUPSY - solar	Leavitt	79.4	576.0	0.1378

Average = $0.08 \text{ gal/in}^2/\text{min}$

Best = $0.10 \text{ gal/in}^2/\text{min}$

Calculating stocking density

How much seed can you put in an upweller?

- It is very site specific!
- Need to calculate a starting point.
- Adjust your stocking density as you learn your system and your waters.

Silo Stocking Densities (from Malinowski - 1986)

			N	umber of class	ms			
Sieve	Approximate	Number	Optimal	in Optimal	Weekly			
Mesh Clam Size		of clams	Stocking	Stocking Stocking				
Size	Retained	per ml	Volume	Volume	Increase*			
				(approx.)	(approx.)			
Initial	0.75 mm	2,500	125 ml	312,000	100-300%			
1.0 mm	1.50 mm	720	175 ml	125,000	100-200%			
1.4 mm	2.50 mm	116	300 ml	35,000	100%			
2.0 mm	3.30 mm	99	350 ml	35,000	100%			
2.8 mm	3.90 mm	45	600 ml	27,000	90%			
3.4 mm	6.00 mm	20	1,000 ml	19,500	50%			
5.7 mm	8.30 mm	6	1,500 ml	9,000	35%			
*Weekly measure	y increases ed in a gradu	in total ated cyline	volume of der	clams in	a silo, as			

Silo Stocking Density (from Jones & Jones 1993)

The following chart shows the number of individual upwell units required to produce seed of 6-8mm outplanting size, given a flow rate of 20 l/min/l seed.

UPWELLER	R NUMBER OF CLAMS							
DIAMETER	10,000	20,000	50,000	100,000	500,000	1,000,000	2,000,000	5,000,000
inches								
6	1	1	3	7	33	67	133	333
8	1	1	2	4	. 19	38	75	188
10	1	1	1	2	12	24	48	120
12	1	1	1	2	8	17	33	83
14	1	1	1	1	6	12	24	61
20	1	1	1	1	3	6	12	30
22	1	1	1	1	2	5	10	25
25	1	1	1	1	2	4	8	19

Upweller Comparison Data - Density

U	pweller Data		flow	silo area	flow/area	clams/silo	clams/area	clams/area-flow
			(gpm / silo)	(in²)	(gpm/in²)	(#)	(# / in²)	(# / in²-gpm)
Literature values								
*	Malinowski	1986	5.0	153.9	0.0325	12,000	78.0	15.6
*	Manzi <i>et al</i> .	1984	9.3	381.6	0.0245	40,000	104.8	11.2
Up	wellers							
	Floating airlift	Harwich	21.0	153.9	0.1365	5,000	32.5	1.5
*	NC/Mook tidal raft	book	11.1	361.0	0.0307	15,625	43.3	3.9
*	Tidal raft	Eastham	13.2	324.0	0.0407	12,500	38.6	2.9
	Land-based - outside	Mashpee	5.8	176.6	0.0330	41,667	235.9	40.4
*	Land-based - outside	Falmouth	10.4	176.6	0.0589	17,857	101.1	9.7
	Land-based - outside	Yarmouth	6.3	254.3	0.0246	41,667	163.8	26.2
*	Land-based - inside	Chatham	8.0	254.3	0.0313	17,045	67.0	8.4
	Land-based - inside	Harwich	4.0	254.3	0.0157	67,797	266.6	66.6
	Raft-based - outside	Brewster	9.4	418.0	0.0224	31,250	74.8	8.0
*	Axial flow	SEMAC	83.3	254.3	0.3275	83,333	327.6	3.9
*	FLUPSY - conv	Leavitt	67.5	576.0	0.1172	93,750	162.8	2.4
*	FLUPSY - modifed	Leavitt	71.7	576.0	0.1245	93,750	162.8	2.3
*	FLUPSY - solar	Leavitt	79.4	576.0	0.1378	93,750	162.8	2.1

Average = 13.7 #/gal/in²/min

Best = 4.8 #/gal/in²/min

Calculating approximate stocking density

- Surface area of 18 inch diameter round silo
 A = π r²
 - ► A = 3.14 x 9² = 254.3 in²
- Flow rate is 75 gpm through each silo
- Target density is 5 clams/gpm-in² (@ 10 mm)
- Stocking density in a six silo system?
 - Stocking density per silo:
 254.3 in² x 75 gpm x 5 clams/gpm-in² = 95,362 clams
 - Capacity of upweller system:
 6 silos @ 95,362 clams/silo = 572,175 clams

The final product

Whatever the nursery system set-up, the objective is the grow the largest and healthiest animals in the least amount of time at the least cost.

